Suppressive activities of OGG1 and MYH proteins against G:C to T:A mutations caused by 8-hydroxyguanine but not by benzo[a]pyrene diol epoxide in human cells in vivo.

نویسندگان

  • Arito Yamane
  • Kazuya Shinmura
  • Noriaki Sunaga
  • Takayuki Saitoh
  • Satoru Yamaguchi
  • Yumi Shinmura
  • Kimio Yoshimura
  • Hirokazu Murakami
  • Yoshihisa Nojima
  • Takashi Kohno
  • Jun Yokota
چکیده

8-Hydroxyguanine (8OHG), an oxidatively damaged base, and benzo[a]pyrene-diol-epoxide (BPDE), a metabolite of benzo[a]pyrene found in cigarette smoke, are thought to be major causes for G:C to T:A transversions in DNA of human cells. In this study, we assessed the abilities of OGG1, MYH and APE1 proteins, which are components of a base excision repair pathway, to suppress G:C to T:A transversions caused by 8OHG or BPDE by a bacterial suppressor tRNA (supF) forward mutation assay using a shuttle plasmid, pMY189. The introduction of a single 8OHG residue at position 159 of the supF gene and treatment with BPDE led to a 65- and 34-fold increase in mutation frequencies of the pMY189 plasmid, respectively, after replication in the NCI-H1299 human lung cancer cell line. G:C to T:A transversions were predominantly induced in these plasmids. Both the mutation frequency of the 8OHG-containing plasmid in NCI-H1299 cells and the occurrence of G:C to T:A transversions at position 159 in the supF gene were significantly reduced by overexpression of OGG1 and MYH proteins, but not by that of APE1 protein. In contrast, neither mutation frequency nor the occurrence of G:C to T:A transversion of the BPDE-treated plasmid was reduced by overexpression of OGG1, MYH and APE1 proteins. These results indicate that OGG1 and MYH function as suppressors for G:C to T:A transversions by 8OHG but not by BPDE in human cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutability of p53 hotspot codons to benzo(a)pyrene diol epoxide (BPDE) and the frequency of p53 mutations in nontumorous human lung.

p53 mutations are common in lung cancer. In smoking-associated lung cancer,the occurrence of G:C to T:A transversions at hotspot codons, e.g., 157, 248, 249,and 273, has been linked to the presence of carcinogenic chemicalsin tobacco smoke including polycyclic aromatic hydrocarbons suchas benzo(a)pyrene (BP). In the present study, we have used a highly sensitive mutation assay to determine the ...

متن کامل

Base damage, local sequence context and TP53 mutation hotspots: a molecular dynamics study of benzo[a]pyrene induced DNA distortion and mutability

The mutational pattern for the TP53 tumour suppressor gene in lung tumours differs to other cancer types by having a higher frequency of G:C>T:A transversions. The aetiology of this differing mutation pattern is still unknown. Benzo[a]pyrene,diol epoxide (BPDE) is a potent cigarette smoke carcinogen that forms guanine adducts at TP53 CpG mutation hotspot sites including codons 157, 158, 245, 24...

متن کامل

Normal somatic hypermutation of Ig genes in the absence of 8-hydroxyguanine-DNA glycosylase.

The hypermutation cascade in Ig V genes can be initiated by deamination of cytosine in DNA to uracil by activation-induced cytosine deaminase and its removal by uracil-DNA glycosylase. To determine whether damage to guanine also contributes to hypermutation, we examined the glycosylase that removes oxidized guanine from DNA, 8-hydroxyguanine-DNA glycosylase (OGG1). OGG1 has been reported to be ...

متن کامل

Resistance of HeLa cell mitochondrial DNA to mutagenesis by chemical carcinogens.

The mutagenic potentials of ethylmethane sulfonate, N-methyl-N'-nitrosoguanidine, and benzo(a)pyrene diol-epoxide in human mitochondria were determined by cloning and nucleotide sequencing of mitochondrial (mt) DNA from HeLa cells treated with these mutagens. Mutagen concentrations that reduced cell survival to approximately 0.1% of untreated cultures were used. Mitochondrial DNA was prepared 2...

متن کامل

1 Effects of base excision repair proteins on mutagenesis by 8 - oxo - 7 , 8 - dihydroguanine ( 8 -

8-Oxo-7,8-dihydroguanine (8-oxo-Gua, also known as 8-hydroxyguanine) is a major base lesion that is generated by reactive oxygen species in both the DNA and nucleotide pool. The role of DNA glycosylases, which initiate base excision repair, in the mutagenic processes of 8-oxo-Gua in DNA and 8-oxo-7,8-dihydro-2'-deoxyguanosine 5'-triphosphate (8-oxo-dGTP, also known as 8-hydroxy-2'-deoxyguanosin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Carcinogenesis

دوره 24 6  شماره 

صفحات  -

تاریخ انتشار 2003